[Date Prev][Date Next][Thread Prev][Thread Next]
[Date Index]
[Thread Index]
- Subject: Re: Implementing the Dijkstra Algorithm
- From: Luis Carvalho <carvalho@...>
- Date: Mon, 21 Nov 2005 18:32:58 -0500
> I used the wikipedia article on it (link:
> http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm), as a base for the
> implementation. The problem is that the code is working erract. It returns
> correctly on the paths that need only 1 step. Most of the 2 and 3 steps and
> none that needs 4 or more steps.
Quick and dirty, following your Wikipedia link:
-- test graph: if G[u][v] == 0, there is no edge between u and v
G = {
-- 1 2 3 4 5 6
{ 0, 0, 13, 0, 16, 8 }, -- 1
{ 0, 0, 0, 6, 0, 10 }, -- 2
{ 13, 0, 0, 14, 0, 11 }, -- 3
{ 0, 6, 14, 0, 5, 17 }, -- 4
{ 16, 0, 0, 5, 0, 7 }, -- 5
{ 8, 10, 11, 17, 7, 0 } -- 6
}
local INF = 1/0 -- not really needed
local extract_min = function(q, d)
local m = INF
local i = 0
for k, v in pairs(q) do
if d[v] < m then
m = d[v]
i = k
end
end
q[i] = nil -- remove i
return i
end
function dijkstra (graph, start)
local n = table.getn(graph) -- #vertices
local d = {}
local previous = {}
for v = 1, n do d[v] = INF end
d[start] = 0
local S = {}
local Q = {}
for v = 1, n do Q[v] = v end -- fill Q
local nQ = n -- # elements in Q
while nQ > 0 do
local u = extract_min(Q, d)
nQ = nQ - 1
table.insert(S, u)
for v = 1, n do
if G[u][v] > 0 -- edge between u and v?
and d[v] > d[u] + G[u][v] then -- relax
d[v] = d[u] + G[u][v]
previous[v] = u
end
end
end
return d, previous
end
function path (p, start)
local i = start
local t = { i }
while p[i] do
table.insert(t, 1, p[i])
i = p[i]
end
return t
end
Testing:
$ lua -i dijkstra.lua
Lua 5.1 (beta) Copyright (C) 1994-2005 Lua.org, PUC-Rio
> d,p = dijkstra(G, 1)
> table.foreach(d, print)
1 0
2 18
3 13
4 20
5 15
6 8
> table.foreach(p, print)
2 6
3 1
4 5
5 6
6 1
> for i = 1, table.getn(G) do print(i, d[i], table.concat(path(p, i), ' -> ')) end
1 0 1
2 18 1 -> 6 -> 2
3 13 1 -> 3
4 20 1 -> 6 -> 5 -> 4
5 15 1 -> 6 -> 5
6 8 1 -> 6
Needless to say, this is just a prototype: no error checking or optimizations.
Cheers,
luis.
--
A mathematician is a device for turning coffee into theorems.
-- P. Erdos
--
Luis Carvalho
Applied Math PhD Student - Brown University
PGP Key: E820854A <carvalho@dam.brown.edu>