Inheritance Tutorial |
|
The following example implements a class with no inheritance:
SimpleClass = {} SimpleClass_mt = { __index = SimpleClass } -- This function creates a new instance of SimpleClass -- function SimpleClass:create() local new_inst = {} -- the new instance setmetatable( new_inst, SimpleClass_mt ) -- all instances share the same metatable return new_inst end -- Here are some functions (methods) for SimpleClass: function SimpleClass:className() print( "SimpleClass" ) end function SimpleClass:doSomething() print( "Doing something" ) end
In the above example, SimpleClass
represents a table that holds all of our class's methods, like a class declaration. SimpleClass_mt
is the metatable we will attach to each class instance we create. The function SimpleClass:create()
creates an instance of our class SimpleClass
. Construction of a class instance involves creating an empty table and then attaching our SimpleClass
metamethods to it. The result of attaching the metamethods is that the new instance looks to the metatable we attached for its customised behaviour.
Method invocations on the instance will trigger the "index" event on the instance, causing a lookup on the "__index
" member of the instance's metatable. The __index
member is simply a reference to SimpleClass
. Therefore, method invocations on the instance will cause a lookup in the SimpleClass
table.
Here is an example:
> simple = SimpleClass:create() > > simple:className() SimpleClass > > simple:doSomething() Doing something
Now we want to create a new class SubClass
that inherits and, optionally, overrides functions from SimpleClass
.
-- Create a new class that inherits from a base class -- function inheritsFrom( baseClass ) -- The following lines are equivalent to the SimpleClass example: -- Create the table and metatable representing the class. local new_class = {} local class_mt = { __index = new_class } -- Note that this function uses class_mt as an upvalue, so every instance -- of the class will share the same metatable. -- function new_class:create() local newinst = {} setmetatable( newinst, class_mt ) return newinst end -- The following is the key to implementing inheritance: -- The __index member of the new class's metatable references the -- base class. This implies that all methods of the base class will -- be exposed to the sub-class, and that the sub-class can override -- any of these methods. -- if baseClass then setmetatable( new_class, { __index = baseClass } ) end return new_class end
The function inheritsFrom(baseClass)
takes a single argument, the class declaration we want to inherit from. The function returns a class declaration which we can then tailor. new_class
is the new class declaration to be returned. The nested function new_class:create()
is part of the class declaration returned and will create new instances of the sub class we are creating. This function creates a newinst
table which uses our new class table to hold its methods. The new class table in turn looks in the baseClass
if it cannot find a method we require, and thus we inherit its methods.
Building on SimpleClass
we now create a class called SubClass
that inherits from SimpleClass
and overrides className()
:
> -- Create a new class that inherits from SimpleClass > SubClass = inheritsFrom( SimpleClass ) > > -- override className() function > function SubClass:className() print( "SubClass" ) end > > -- Create an instance of SimpleClass > simple = SimpleClass:create() > > simple:className() SimpleClass > > simple:doSomething() Doing something > > -- Create an instance of SubClass > sub = SubClass:create() > > sub:className() -- Call overridden method SubClass > > sub:doSomething() -- Call base class method Doing something >
We can now expand on our inheritance structure and add features that are common in other languages, like access to a class's super class and a isa()
method that provides type id functionality:
-- A new inheritsFrom() function -- function inheritsFrom( baseClass ) local new_class = {} local class_mt = { __index = new_class } function new_class:create() local newinst = {} setmetatable( newinst, class_mt ) return newinst end if nil ~= baseClass then setmetatable( new_class, { __index = baseClass } ) end -- Implementation of additional OO properties starts here -- -- Return the class object of the instance function new_class:class() return new_class end -- Return the super class object of the instance function new_class:superClass() return baseClass end -- Return true if the caller is an instance of theClass function new_class:isa( theClass ) local b_isa = false local cur_class = new_class while ( nil ~= cur_class ) and ( false == b_isa ) do if cur_class == theClass then b_isa = true else cur_class = cur_class:superClass() end end return b_isa end return new_class end
And, an example of usage:
> SimpleClass = inheritsFrom( nil ) -- pass nil because SimpleClass has no super class > > SubClass = inheritsFrom( SimpleClass ) > > FinalClass = inheritsFrom( SubClass ) > > sub = SubClass:create() > fc = FinalClass:create() > > print( fc:isa( SubClass ) ) true > print( fc:isa( FinalClass ) ) true > print( sub:isa( SubClass ) ) true > print( sub:isa( FinalClass ) ) false
[Wikipedia article on Prototype-based programming]
Most of the code is basically the same as above, but reduced to only the essentials needed to make "Prototype based programming" work. More exactly it allows prototype programming using cloning and prototype delegation. Access to a property not set in an object is delegated to it's prototype. This code uses the table
table as the very basic prototype, and object
as a specialization of table
. The function object.isa
is not strictly needed for the prototype paradigm, but more of a convenience.
clone(base_object[, clone_object]) -> table
Parameters:
base_object
: table, the base object to be cloned.
clone_object
: table, an optional object to turn into a clone of base_object
.
Returns:
table
: the new clone.
If new_object
is not of type table
new_object
is returned if it's not nil
in which case base_object
is returned. new_object
has it's metatable set to itself, and it's __index
now points to it's prototype base_object
. clone
is also available as object.clone
.
isa( clone_object, base_object) -> bool
Parameters:
clone_object
: table, the clone to check
base_object
: table, the suspected base of clone_object
.
Returns:
bool
: clone has base in the prototype hierarchy.
If neither of the arguments is a table
isa
falls back to returning the comparison of the types. It's also available as object.isa
.
function clone( base_object, clone_object ) if type( base_object ) ~= "table" then return clone_object or base_object end clone_object = clone_object or {} clone_object.__index = base_object return setmetatable(clone_object, clone_object) end function isa( clone_object, base_object ) local clone_object_type = type(clone_object) local base_object_type = type(base_object) if clone_object_type ~= "table" and base_object_type ~= table then return clone_object_type == base_object_type end local index = clone_object.__index local _isa = index == base_object while not _isa and index ~= nil do index = index.__index _isa = index == base_object end return _isa end object = clone( table, { clone = clone, isa = isa } )
-- testing "isa" foo = object:clone() bar = object:clone() baz = foo:clone() print( foo:isa(object) ) print( bar:isa(foo) ) print( baz:isa(foo) ) --[[ output: true false true ]] --testing prototype delegation foo = object:clone() bar = foo:clone() function foo:speak() print(self.thoughts or "foo has no thoughts") end bar:speak() --[[ output: foo has no thoughts ]] bar.thoughts = "I may be a clone, but I'm an individual!" bar:speak() --[[ output: I may be a clone, but I'm an individual! ]]